Lecture-1: Different notions of ∞ -categories

Kadri İlker Berktav

Department of Mathematics Bilkent University

Outline

- 1. Overview of literature and key ideas
 - Lurie's Higher Topos theory
 - Pridham, An introduction to derived (algebraic) geometry, (2023)
 - Ravenel, What is an ∞ -category? (2023)
- 2. ∞ -categories as topological categories
- 3. ∞ -categories as simplicial categories

An ∞ -category \mathcal{C} is a generalization of an ordinary category, (aka a 1-category).

• It has objects and morphisms (in the sense of usual categories), but additionally there are k-morphisms for k>1, leading to "morphisms between morphisms"-type structure.

An ∞ -category $\mathcal C$ is a generalization of an ordinary category, (aka a 1-category).

- It has objects and morphisms (in the sense of usual categories), but additionally there are k-morphisms for k > 1, leading to "morphisms between morphisms"-type structure.
- Composition is not well-defined (always up to something!)
- Suitable setting to do homotopy theory
- Mapping spaces $Hom_{\mathcal{C}}(X,Y)$ are more structured than sets!

 \exists many equivalent descriptions of ∞ -categories:

- Useful to have different ways (depending on your purpose)
- We focus on the more accessible ones:

A Bluffer's Guide

 \exists many equivalent descriptions of $\infty\text{-categories}:$

- Useful to have different ways (depending on your purpose)
- We focus on the more accessible ones:

A Bluffer's Guide

- (1) Conceptually easiest model: **Topological categories**
 - $Hom_{\mathcal{C}}(X,Y)$ has the structure of a topology.
 - The composition \circ is a continuous operation.

 \exists many equivalent descriptions of $\infty\text{-categories}:$

- Useful to have different ways (depending on your purpose)
- We focus on the more accessible ones:

A Bluffer's Guide

- (1) Conceptually easiest model: **Topological categories**
 - $Hom_{\mathcal{C}}(X,Y)$ has the structure of a topology.
 - The composition \circ is a continuous operation.
- (2) Combinatorially efficient model: Simplicial categories
 - $Hom_{\mathcal{C}}(X,Y)$ has the structure of a simplicial set.

 \exists many equivalent descriptions of ∞ -categories:

- Useful to have different ways (depending on your purpose)
- We focus on the more accessible ones:

A Bluffer's Guide

- (1) Conceptually easiest model: **Topological categories**
 - $Hom_{\mathcal{C}}(X,Y)$ has the structure of a topology.
 - The composition \circ is a continuous operation.
- (2) Combinatorially efficient model: Simplicial categories
 - $Hom_{\mathcal{C}}(X,Y)$ has the structure of a simplicial set.
- (3) Easiest to build: Relative categories

pairs $(\mathcal{C}, \mathcal{W})$ where \mathcal{C} is a category, \mathcal{W} is a subcategory

Relative category description

• $\{f \in Hom_{\mathcal{W}}\} \leftrightarrow \{\text{equivalence weaker than isomorphism}\}$

```
• Examples: W = \begin{cases} \text{homotopy equivalences for Top} \\ \text{quasi-isomorphisms for Ch} \\ \text{quasi-isomorphisms for cdga}_{\mathbb{K}}^{\leq 0} \end{cases}
```

Relative category description

• $\{f \in Hom_{\mathcal{W}}\} \leftrightarrow \{\text{equivalence weaker than isomorphism}\}$

```
• Examples: W = \begin{cases} \text{homotopy equivalences for Top} \\ \text{quasi-isomorphisms for Ch} \\ \text{quasi-isomorphisms for cdga}_{\mathbb{K}}^{\leq 0} \end{cases}
```

- Very little data needed to specify an ∞ -category
- Once a notion of weak equivalence is chosen, the rest is determined.
- Can use model categories as well.

Definition

A **model category** is a relative category (C, W) together with two choices of classes of morphisms, called *fibrations* and *cofibrations*, satisfying an extra list of axioms.

Definition

A **model category** is a relative category (C, W) together with two choices of classes of morphisms, called *fibrations* and *cofibrations*, satisfying an extra list of axioms.

- ${\mathcal C}$: any category with limits/colimits. All morphisms are both fibrations and cofibrations; the weak equivalences are just the isomorphisms.
- For $C = \operatorname{cdga}_{\mathbb{K}}^{\leq 0}$ weak equivalences = quasi-isomorphisms fibrations = degreewise surjections cofibrations = the maps having LLP wrt. trivial fib.
- For C = Top $\begin{cases} \text{weak equivalences} = \text{homotopy equivalences} \\ \text{fibrations} = \text{the maps having HLP} \\ \text{cofibrations} = \text{the maps having HEP} \end{cases}$

Next: Two (equivalent!) approaches via topological spaces or simplicial sets...